UAV and GPS Dependency

Last weekend I was attempting to have my UAV fly a couple of programmed missions so that I could get a straightforward video of what I was doing.

My mission was simple, and I’d run similar missions before so I expected this to produce a nice video. I would take off, fly a circle with a 50 meter radius at 100 meters altitude, move to another location and fly a second circle at 30 meters altitude, then return to launch. Here’s what it looked like in Mission Planner.

Things look good in Mission Planner

Things look good in Mission Planner

Things started well, but went haywire a few minutes into the flight. There were a few bobbles as is descended from the first circle altitude to the second circle, but I was hoping to let the on-board computer maintain or recover control.


The flight starts around 1:40 on the video, and things generally look good until around 4:50. At that point the UAV starts making some significant attitude adjustments. Around 5:10 it seems to have recovered and making the adjustments to go around the second circle. (At 5:35 the camera is pointed back towards the launch point and you can see two small dots on the ground. That’s the two of us monitoring the flight with the transmitter and a pair of binoculars.) It finishes the second circle around 6:30, at which it should have initiated the RTL, Return to Launch, phase of its mission. Unfortunately I do not currently have the UAV set to face forward during the RTL phase, and so it does not rotate towards the launch point, just travels in that direction. You can see it tilt slightly back, moving in the correct direction, for the first ten seconds until 6:42, but then it starts making huge adjustments to its direction, running the motors at full throttle. At 8:08 it hit the trees.
After the flight I downloaded the log file from the UAV and tried to analyse what went wrong. I was able to produce this picture using Google Earth from the resulting KMZ file.

Mission Gone Bad

Mission Gone Bad

I’m still not sure exactly what went wrong. I believe that the copter lost resolution on the GPS, simply based on the fact that the track never shows it going to the trees, and I don’t remember it doing as much spiraling as the KMZ would indicate. The KMZ file may be available at my home server but right now it does not appear to want to serve kmz or kml files.  The descent from the first circle towards the second circle appears smooth until it no longer needed to travel horizontally, At the point when it needed to only reduce altitude it seemed to circle and appeared to be much more unstable. Perhaps making sure that all programmed descents had much more vertical motion would produce smoother flights in general.

A few valuable lessons that I learned, in no particular order.

  • Stick to flying where there are no people nearby. Even at an RC airplane field with a few experienced people around, this could cause significant injury to humans or damage to property. When the copter was coming in fast towards the landing area, and obviously going to overshoot into the trees, completely losing the copter in the trees is much better than causing any injury or damage to someone else.
  • Be quicker to abort an automated mission and take manual control. I had handed my transmitter to a more experienced pilot while I monitored the automatic mission via binoculars. Several times he asked if he should take control of the unit and I told him that I wanted to see if the unit would recover itself. The early bobbles during the descent from the first circle to the second it recovered, but the RTL path was completely wrong.
  • Give the UAV plenty of time to achieve a reliable GPS lock before arming the motors and taking off.  According to what I’ve read, the launch location used for the RTL function is stored when you arm the motors, not when you actually leave the ground, or power on the entire copter. Landing and disarming the motors in a second location would reset the launch location when you re-arm them.

An interesting thing I’ve noticed by following the drone chatter on the hype meter is how much of a clash this is causing between the computer and robotics crowd and the traditional RC airplane crowd.

The traditional RC airplane hobbyists have been around for over 50 years, and have slowly been integrating new technology such has digital radios, electric motors, and Lithium Polymer batteries into use as the technology as become available. Historical fixed wing aircraft and analog transmitters required large open spaces for both safety and to make sure that there was no radio interference. Liquid fueled model aircraft produced large amounts of noise, and so added to the reasons of working in large open spaces.

The person coming into the UAV/Drone space often has no background in the RC airplane hobby itself and so has no history of the safety requirements and why they exist. Starting with a quadcopter and its capabilities is completely different from starting with a fixed wing aircraft. VTOL, vertical takeoff and landing, brings a confidence that this can be done in a small space, however misplaced that confidence may be. First person video (FPV) seems a natural extension to most new pilots and the concept of limited bandwidth is completely alien.

There are good organizations such as http://www.modelaircraft.org/ that exist for hobbyists, but the person getting into it from the computer side of things often may not even know about them, and an unattractive web site may cause lack of understanding of the benefits offered.

I would not have gotten into this at all if a friend that I’ve known since we were in 4th grade had not added multi rotor copters to his long standing hobby of RC Airplanes. He was telling me how much was available in the new systems, and showing me first person videos on his screen. The fact that he was using all of these digital systems, but his video was still analog, was what got me interested. I wanted to be able to record the entire flight digitally.

I’ve been extremely lucky so far, not having damaged anything or injured anyone, and not broken more than $30 worth of items on my ‘copter so far, let alone lost it entirely. I’ve still got plenty to learn, as well as learning to be much safer, but I’m enjoying the process so far.

Advertisements

2 thoughts on “UAV and GPS Dependency

  1. Wow the video was pretty amazing, though. Crazy how it went full throttle and glad it didn’t smash into anything or anyone important.

    • Now that I’m actually flying this thing, Brett is trying to have me get one with more powerful motors. It would be like comparing the power of a 2 liter engine with a 5 liter. When cruising slowly, it would only be a bit smoother, but when pushed hard it would leave this set in the dust.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s